Interleaving Object Categorization and Segmentation
نویسندگان
چکیده
In this chapter, we aim to connect the areas of object categorization and figure-ground segmentation. We present a novel method for the categorization of unfamiliar objects in difficult real-world scenes. The method generates object hypotheses without prior segmentation, which in turn can be used to obtain a category-specific figure-ground segmentation. In particular, the proposed approach uses a probabilistic formulation to incorporate knowledge about the recognized category as well as the supporting information in the image to segment the object from the background. This segmentation can then be used for hypothesis verification, to further improve recognition performance. Experimental results show the capacity of the approach to categorize and segment object categories as diverse as cars and cows.
منابع مشابه
Segmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملDoes Image Segmentation Improve Object Categorization?
Image segmentation and object recognition are among the most fundamental problems in computer vision, and the potential interaction between these tasks has been discussed for many years. The usefulness of recognition for segmentation has been demonstrated with various top-down segmentation algorithms, however, the impact of bottom-up image segmentation as pre-processing for object recognition i...
متن کاملVisual Dictionary Learning for Joint Object Categorization and Segmentation
Representing objects using elements from a visual dictionary is widely used in object detection and categorization. Prior work on dictionary learning has shown improvements in the accuracy of object detection and categorization by learning discriminative dictionaries. However none of these dictionaries are learnt for joint object categorization and segmentation. Moreover, dictionary learning is...
متن کاملDecomposed Learning for Joint Object Segmentation and Categorization
We present a learning algorithm for joint object segmentation and categorization that decomposes the original problem into two sub-tasks and admits their bidirectional interaction. In the first stage, in order to decompose output space, we train category-specific segmentation models to generate figure-ground hypotheses. In the second stage, by taking advantage of object figure-ground informatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006